HARMONIC CONSTANTS Annex A

Edition 1.0

Contents

- 1. Introduction
 - 1.1 General
 - 1.2 Major Tidal Constituents Lunar
 - 1.3 Major Tidal Constituents Solar
 - 1.4 Major Tidal Constituents Shallow Water

1. Introduction

1.1 General

The following documentation gives a brief explanation of the most commonly used Harmonic constituents.

1.2 Major Tidal Constituents Lunar

M₂ The semi-diurnal constituent of a fictitious moon, which moves in

a circular orbit in the plane of the equator

N₂ & L₂ Modulate M₂ converting the circular orbit of the fictitious moon

into an elliptical one in the plane of the equator

 v_2 , λ_2 , μ_2 & S_2 Modulate M_2 , allowing for the fact that the real moon's orbit is not

elliptical, but pear shaped, since the sun attracts it more at new moon than at full moon. This S_2 is not the main semi-diurnal

constituent of the mean sun.

 $\mathbf{K_2}$ Modulates $\mathbf{M_{2,}}$ converting the orbit from the plane of the equator

into the mean plane of the real moon.

K₁ **& O**₁ The diurnal constituents of a fictitious moon which has a fixed

circular orbit in the mean plane of the real moon

J₁, **M**₁ & **Q**₁ Modulate K₁ & O₁ allowing for the fact that the moon's orbit is not

circular, but elliptical. M₁ is the sum of two constituents, which

cannot easily be separated.

M_f & M_m 'Long Period' lunar constituents, with periods of about a fortnight

and one month respectively. They have very small amplitudes, and are often masked by meteorological and shallow water

effects.

1.3 Major Tidal Constituents Solar

S₂ The semi-diurnal constituent of the mean sun, which moves in a

circular orbit in the plane of the equator

 T_2 Modulates S_2 allowing for the fact that the sun's orbit is an

ellipse. Another constituent, which operates with T₂, is so small

that it is not named and is neglected.

Description of Harmonic Constituents

 $\mathbf{K_2}$ Modulates S_2 , allowing for the fact that the sun's orbit is in the

plane of the ecliptic. Another constituent, which operates with it, is so small that it is not named and is neglected. This K_2 has the

same speed as the moon's K_{2} , and the two are combined.

K₁ & P₁ The diurnal constituents of a fictitious sun which has a circular

orbit in the plane of the ecliptic. This K₁ has the same speed as

the moon's K_1 , and the two are combined.

S_{sa} & S_a 'Long Period' solar constituents, with periods of about six months

and one year respectively. They have very small amplitudes, and in practice cannot usually be distinguished from changes in MSL

caused by prevailing winds and monsoons.

1.4 Major Tidal Constituents Shallow Water

 $\mathbf{M_4}$ The second harmonic of $\mathbf{M_2}$ with twice its speed.

MS₄ A quarter diurnal constituent produced from M₂ & S₂. It has a

speed equal to the sum of their two speeds.

 M_6 The third harmonic of M_2 with three times it's speed.

2MS₆ A sixth diurnal constituent produced from M_2 and S_2 . It has a

speed equal to the sum of twice the speed of M₂ plus the speed

of S₂

There are of course many other shallow water constituents with high harmonic frequencies, as shown in Annex B.