

Ireland - South West Coast

Coverage Diagram

5623	Chart Title	Natural Scale 1:
1	The Bull to Tuskar Rock	500,000
2	The Bull to Glandore Harbour	150,000
3	Glandore Bay to Ballycotton Bay	150,000
4	Upper Reaches of Bantry Bay	30,000
5	Bantry Bay Central Part	30,000
6	Harbours and Achorages in South West Ireland	
6A	Castletown Bearhaven	15,000
6B	Dunbeacon Harbour	10,000
6C	Kitchen Cove	10,000
6D	Dunmanus Harbour	10,000
6E	Glandore Harbour	25,000
7	Entrance to Bantry Bay	30,000
8	Dunmanus Bay	30,000
9	Approaches to Dunmanus Bay	30,000
10	Mizen Head and Three Castle Head	30,000

5623	Chart Title	Natural Scale 1:
11	Crookhaven to Long Island and Cape Clear	30,000
12	Schull Harbour to Baltimore Bay	30,000
13A	Baltimore Harbour	6,250
13B	Continuation of The Sound	6,250
14	Baltimore Harbour to Castlehaven	30,000
15	Toe Head to Clonakilty Bay	50,000
16A	Courtmacsherry Bay	25,000
16B	Continuation of Argideen River	25,000
17	Kinsale	12,500
18	Clonakilty Nay to Old Head of Kinsale	50,000

Notes

Positions are referred to the WGS84 compatible datum, European Terrestrial Reference System 1989 Datum.

Depths are in metres and are reduced to Chart Datum, which is approximately the level of Lowest Astronomical Tide.

Heights are in metres. Underlined figures are drying heights above Chart Datum. Overhead clearance heights are above Highest Astronomical Tide. All other heights are above Mean High Water Springs. Navigational marks: IALA Maritime Buoyage System-Region A (Red to port)

DATUM

All charts are referred to WGS84. Any positions taken from GPS (referred to WGS84) or from ADMIRALTY Notices to Mariners (referred to ETRS89) can be plotted directly on all charts.

OMISSION OF DETAIL

Within the limit marked _____ and the coastline, this chart should only be used for planning purposes as features such as depths, platforms, wrecks, pipelines, minor aids to navigation and cables have been omitted. Larger scale ADMIRALTY charts are available for mariners intending to navigate in this area.

CHART ACCURACY

Owing to the age and quality of the source information, some of the detail on this chart may not be positioned accurately. Particular caution is advised when navigating in the vicinity of dangers, even when using electronic positioning system such as GPS.

MARINE FARMS

Marine farms exist within the area of this chart. They may not all be shown individually and their positions may change frequently. Marine farms may be marked by lit or unlit buoys or beacons. Mariners are advised to avoid these structures and their associated moorings.

OIL AND GAS FIELDS

Production platforms and associated structures, including tanker moorings, storage tankers and platforms on pipelines, generally exhibit Mo(U) lights, aircraft obstruction lights and audible fog signals. Unauthorized navigation is prohibited within 500 metres of all such structures.

SUBMARINE CABLES AND PIPELINES

Mariners should not anchor, trawl or engage in seabed operations in the vicinity of submarine cables and pipelines. Submarine cables support national infrastructure; damage to them may affect critical services and can result in serious consequences, as well as creating a potential hazard to mariners. Wilful or neglectful damage to a cable may result in legal action. Pipelines are not always buried and their presence may significantly reduce the charted depth. They may also span seabed undulations and cause fishing gear to become irrecoverably snagged, putting a vessel in severe danger.

FIRING PRACTICE AREAS

No restrictions are placed on the right to transit the firing practice areas at any time. The firing practice areas are operated using a clear range procedure: exercises and firing only take place when the areas are considered to be clear of all shipping.

HISTORIC WRECKS

The sites of historic wrecks are protected from unauthorised interference.

SHELLFISH BEDS

Vessels should avoid grounding in areas of shellfish

HM Coastguard Services and Safety Information

VHF MARITIME RADIO

Coastguard Maritime Rescue Co-ordination Centres are on constant watch on Channel 16 - the distress, safety and calling channel. Initial calls should normally be on Ch 16.

HM COASTGUARD

FALMOUTH (MRCC)

Tel. +44 (0) 1326 317575 MMSI: 002320014

e-mail: zone23@hmcg.gov.uk (FAO Falmouth Coastguard)

MILFORD HAVEN (MRCC)

Tel. +44 (0) 1646 690909 MMSI: 002320017

e-mail: zone28@hmcg.gov.uk (FAO Milford Haven Coastguard)

HOLYHEAD (MRCC)

Tel. +44 (0) 1407 762051 MMSI: 002320018

e-mail: zone31@hmcg.gov.uk (FAO Holyhead Coastguard)

IRISH COASTGUARD

DUBLIN (COASTGUARD MRCC)

Tel. +353 1 662 0922 +353 1 662 0923 MMSI: 002500300

e-mail: coastguardnmoc@transport.gov.ie e-mail: mrccdublin@irishcoastguard.ie

MALIN HEAD (COASTGUARD MRSC)

Tel. +353 74 937 0103 MMSI: 002500100

e-mail: mrscmalin@transport.gov.ie mrscmalinhead@irishcoastguard.ie

VALENTIA (COASTGUARD MRSC)

Tel. +353 66 9476109 MMSI: 002500200

e-mail: mrscvalentia@transport.gov.ie mrscvalentia@irishcoastguard.ie

Distress and Safety Communication

Distress - Urgency

A Distress or Urgency message has absolute priority.

Make a call on VHF Channel 16 and give the following essential information:

Distress Call MAYDAY MAYDAY MAYDAY

- Name and Call Sign and MMSI number Position
- Nature of Distress
- Type of assistance required
- Type of boat number of crew intentions

Urgency (eg. if you break down in bad weather or a crewman requires medical attention) Call **PANPAN PANPAN PANPAN** and give:

- Name and Call Sign and MMSI number Position
- Nature of Distress
- Type of assistance required
- Type of boat number of crew intentions

Other Distress Signals

Other recognised signals are:

- Red flares (parachute, multi stars or hand held) Orange smoke signal
- The flag signal NC
- The morse signal SOS ... --- ... by light
- An article of clothing on an oar
- Slowly and repeatedly raising and lowering outstretched arms
- A square flag with anything resembling a ball above or below it
- Continuous sounding of a siren or whistle will also be recognised, or smoke and flames from the vessel
- The carriage of an Emergency Position Indicating Radio Beacon (406 EPIRB) will improve your chances of being located if conventional means fail.

 406 EPIRBs are detected by satellite, in addition to aircraft, and transmitted to a Coastguard Maritime Rescue Co-ordination Centre.

THE USE OF MOBILE TELEPHONES IN DISTRESS AND SAFETY COMMUNICATIONS

The use of mobile telephones in the marine environent offshore is now well established, with users in all areas of the commercial, fishing and leisure communities.

Incidents have occured where vessels requiring assistance from rescue services have used the inland emergency service, or alternatively telephoned direct to request assistance. (e.g. Lifeboat services). This procedure through a mobile telephone is strongly discouraged.

Use of mobile telephones by-passes the existing dedicated well-established international marine distress communications systems.

Mobile telephone coverage offshore is limited and does not afford the same extensive safety coverage as VHF Channel 16. Consequently a greater risk exists of communications difficulties or even a complete breakdown if an accident should occur at the edge of a cell coverage area.

Subsequent on-scene communications would be restricted and delayed if mobile telephone communications were exclusively maintained throughout. There is always a risk that elements of vital information could be lost or misinterpreted by the introduction of further relay links in the communication chain. Mobile telephones are also highly susceptible to failure due to water ingress.

It is not possible to communicate direct to another vessel able to render assistance unless that vessel is also fitted with a mobile telephone and the telephone number is known. Requests for assistance cannot be monitored by other vessels in a position to render assistance. Valuable time would be lost whilst the relevent Coastguard Rescue Coordination Centre receives and then re-broadcasts the information to all ships on the appropriate distress channel(s).

In the interests of Safety Of Life At Sea (SOLAS), owners of vessels are urged to carry MARINE communications equipment onboard and to use this medium as the primary means of Distress and Safety communications.

Product Specifications

PRODUCT USAGE CAUTION

This product is specifically designed, in conjunction with other charts and publications, as an aid to the navigation of leisure craft and locally regulated workboats and fishing vessels and therefore should be used by competent (preferably qualified) maritime navigators. Although this product contains the best information available at the time of publication, the user should navigate with caution, particularly in areas of shallow or confined waters where the depth of water is likely to change due to local conditions. The information provided in this product comes from the latest source information held and is updated by Notice to Mariners upon receipt of new information critical to safe navigation. To help maintain this product for all users, users are asked to notify the United Kingdom Hydrographic Office of any differences found between what is depicted and actual conditions encountered.

KEEPING THIS CHART UPDATED

Updates for the charts are published using the Notices to Mariners Service on the ADMIRALTY Notices to Mariners page found on our website at admiralty.co.uk/msi. All updates for the latest edition of the chart are listed and can be quickly and easily downloaded. All the charts are derived from standard ADMIRALTY charts. No updates are applied to the charts by the United Kingdom Hydrographic Office or its agents after printing. For those who do not have internet access, please contact Tel. 01823 484444 for assistance.

PROVIDE UPDATED INFORMATION

To help maintain this product users are asked to notify the United Kingdom Hydrographic Office of any differences found between what is depicted and actual conditions encountered. Users can do this by submitting a Hydrographic Note form, found on our website admiralty.co.uk/msi or by downloading our H-Note App. The H-Note App is freely available to download on Android and iOS devices. For more information please see here:

IMPROVEMENTS TO THIS PRODUCT

ADMIRALTY Small Craft Charts are designed for use on leisure craft and locally regulated workboats and fishing vessels, where the smaller format charts fit more conveniently into the limited space available. Users with specific suggestions for the improvement of this product or ideas for the expansion of the series are requested to forward their comments to:

Customer Services, The UK Hydrographic Office, Admiralty Way, Taunton. +44(0)1823 484444 E-mail customerservices@ukho.gov.uk

To view all ADMIRALTY Products and services, visit admiralty.co.uk

Tidal Stream Information

5623_1 Tidal Streams referred to HW at DOVER

5623_2 Tidal Streams referred to HW at COBH

	51°26′3 N 10 14·8W	₿	51°28′2N 9 40·9W	◊	51°29′3 N 9 36·4W	♦	51°20′0 N 9 30·0W	
310 344 017 054 087 112	0·7 0·3 0·6 0·2 0·5 0·2 0·5 0·2 0·6 0·2 0·6 0·3	226 092 058 058 070 070	0·5 0·3 0·6 0·4 0·8 0·5 1·3 0·8 1·3 0·8 1·0 0·6	080 080 080 083 092	0·0 0·0 0·3 0·2 0·5 0·3 1·1 0·7 0·9 0·5 0·5 0·3	260 296 014 079 070 068	0.6 0.3 0.5 0.3 0.4 0.2 0.5 0.3 0.6 0.3 0.7 0.4	-6 -5 -4 -3 -2 -1
134	0.7 0.3	092	0.6 0.4	150	0.4 0.2	064	0.5 0.3	0
158 189 228 261 289 310	0.6 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.6 0.3 0.7 0.3	145 170 194 220 226 226	0·7 0·4 0·8 0·5 0·7 0·4 0·9 0·6 0·8 0·5 0·6 0·4	197 220 245 255 255 255	0·4 0·2 0·5 0·3 1·0 0·6 0·8 0·4 0·4 0·2 0·1 0·1	116 221 252 234 241 255	0·4 0·2 0·2 0·1 0·4 0·2 0·7 0·4 0·6 0·4 0·6 0·3	+1 +2 +3 +4 +5 +6

 $5623_3 \qquad \text{Tidal Streams referred to HW at COBH}$

\Diamond	51°28′6N 8 47·0W	\bigotimes	51°21′4N 8 30·8W	\bigotimes	51°43′0N 8 16·5W	♦	51°48′1 N 8 15·5W	(E)	51°37′0 N 8 09·0W	
292 358 040 048 062 075	0.5 0.2 0.3 0.1 0.7 0.3 1.0 0.4 1.0 0.4 0.8 0.3	262 310 032 049 055 064	0.4 0.2 0.1 0.1 0.3 0.1 0.5 0.2 0.6 0.3 0.6 0.3	241 024 035 045 048 060	0·3 0·2 0·1 0·0 0·4 0·2 0·6 0·3 0·7 0·4 0·6 0·3	355 357 001 347 339 331	0·1 0·1 0·5 0·3 0·9 0·5 1·0 0·5 0·6 0·3 0·4 0·2	252 280 028 050 058 063	0·3 0·1 0·1 0·0 0·2 0·1 0·3 0·1 0·5 0·2 0·5 0·2	-6 -5 -4 -3 -2 -1
086	0.5 0.2	079	0.4 0.2	071	0.3 0.2	234	0.2 0.1	066	0.3 0.1	0
162 213 230 241 243 276	0·3 0·1 0·7 0·3 0·8 0·3 1·0 0·4 0·9 0·4 0·5 0·2	105 213 227 236 245 256	0·2 0·1 0·2 0·1 0·5 0·2 0·7 0·3 0·6 0·3 0·5 0·2	141 225 226 233 235 239	0·1 0·0 0·3 0·1 0·5 0·3 0·6 0·4 0·7 0·4 0·4 0·2	176 161 157 167 167 161	0·7 0·4 0·9 0·5 0·9 0·5 0·6 0·3 0·2 0·1 0·1 0·1	092 207 233 234 239 248	0·1 0·1 0·2 0·1 0·3 0·1 0·4 0·2 0·4 0·2 0·4 0·1	+1 +2 +3 +4 +5 +6

5623_11 Tidal Streams referred to HW at COBH

A	51°28′2N 9 40·9W	₿	51°29 9 36	'3N ·4W	
226 092 058 058 070 070	0·5 0·3 0·6 0·4 0·8 0·5 1·3 0·8 1·3 0·8 1·0 0·6 0·6 0·4	080 080 080 083 092 150	Slack 0·3 0·5 1·1 0·9 0·5	0·2 0·3 0·7 0·5 0·3	-6 -5 -4 -3 -2 -1
145 170 194 220 226 226	0.7 0.4 0.8 0.5 0.7 0.4 0.9 0.6 0.8 0.5 0.6 0.4	197 220 245 255 255 255	0·4 0·5 1·0 0·8 0·4 0·1	0·2 0·3 0·6 0·4 0·2 0·1	+1 +2 +3 +4 +5 +6

TIME & HEIGHT DIFFERENCES FOR PREDICTING THE TIDE AT SECONDARY PORTS

			TIME DIFFERENCES			HEIGHT [DIFFEREN	CES (IN I	ЛETRES)	
PLACE	Lat. N	. Long. W	High Water Low Water Zone UT(GMT)				MHWS	MHWN	MLWN	MLWS
совн	51 51	8 18	0500 and 1700	1100 and 2300	0500 and 1700	1100 and 2300	4.1	3.2	1.3	0.4
Coulagh Bay Ballycrovane Harbour	51 43	9 57	-0116	-0036	-0053	-0133	-0.6	-0.5	-0.1	0.0
Black Ball Harbour	51 36	10 02	-0115	-0035	-0047	-0127	-0.7	-0.6	-0.1	+0.1
Bantry Bay CASTLETOWN BEARHAVEN BANTRY	51 39 51 41	9 54 9 28			NDARD P			Table of S		
Dunmanus Bay Dunbeacon Harbour Dunmanus Harbour	51 37 51 32	9 33 9 40	-0057 -0107	-0025 -0031	-0032 -0044	-0104 -0120	-0.8 -0.7	-0.7 -0.6	-0.3 -0.2	-0.1 0.0
Crookhaven	51 28 51 31 51 29 51 32	9 44 9 32 9 22 9 10	-0057 -0040 -0025 -0020	-0033 -0015 -0005 -0030	-0048 -0015 -0010 -0020	-0112 -0110 -0050 -0050	-0.8 -0.9 -0.6 -0.4	-0.6 -0.6 -0.3 -0.2	-0.4 -0.2 +0.1 +0.1	-0.1 0.0 +0.2 +0.3
Clonakilty Bay Courtmacsherry Kinsale	51 35 51 38 51 42 51 45	8 50 8 43 8 31 8 19	-0033 -0025 -0019 -0005	-0011 -0008 -0005 -0005	-0019 -0008 -0009 -0005	-0041 -0015 -0023 -0005	-0.3 -0.1 -0.2 -0.1	-0.2 -0.1 0.0 0.0	0.0 +0.1 0.0	° +0.1 +0.2 +0.1
Cork Harbour COBH	51 51 51 50 51 53 51 54	8 18 8 19 8 20 8 27	+0005 +0000 +0005	STAI +0020 +0010 +0010	NDARD P +0007 +0000 +0020	OINT +0013 +0010 +0010	+0.1 +0.1	Table of S +0.1 +0.1 +0.4	Standard F +0.1 0.0 +0.3	Ports +0.1 0.0 +0.2
Ballycotton	51 50	8 01	-0011	+0001	+0003	-0009	0.0	0.0	-0.1	0.0

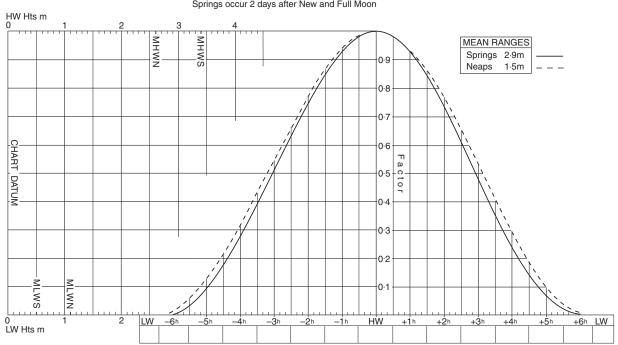
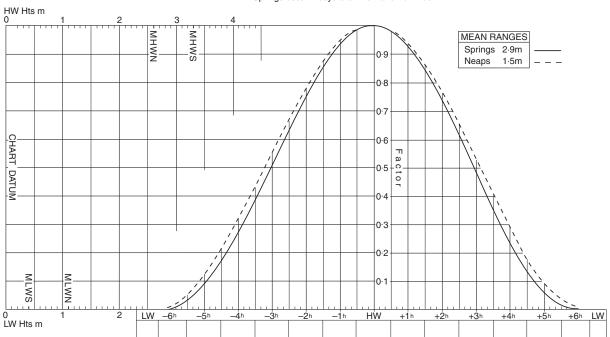
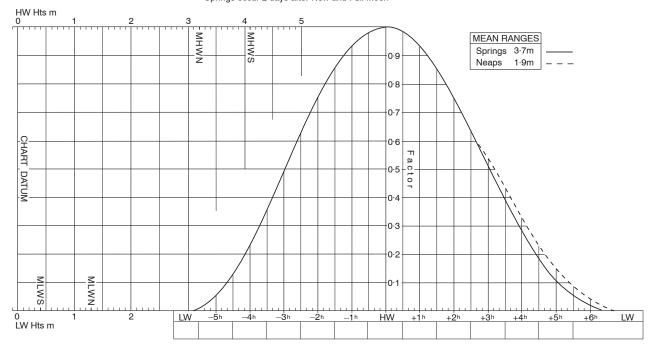

 $[\]circ$ No Data

Table of Standard Ports								
STANDARD PORT	MHWS	MHWN	MLWN	MLWS				
CASTLETOWN BEARHAVEN	3.3	2.6	1.1	0.4				
BANTRY	3.4	2.6	1.1	0.5				
COBH	4.1	3.2	1.3	0.4				

Tidal Curve Diagrams


BANTRY

MEAN SPRING AND NEAP CURVES
Springs occur 2 days after New and Full Moon



CASTLETOWN BEARHAVEN

MEAN SPRING AND NEAP CURVES
Springs occur 2 days after New and Full Moon

COBH MEAN SPRING AND NEAP CURVES Springs occur 2 days after New and Full Moon

For guidance on the use of Standard Curve Diagrams, see ADMIRALTY Tide Tables NP 201B.